MATH 2020 Advanced Calculus II

Tutorial 5

Oct 8,10

1. Find the moments of inertia of the thin rectangular plate of constant density δ defined by $0 \le x \le 2$ and $0 \le y \le 1$ with respect to the *x*-axis and *y*-axis. Solution.

$$
I_x = \int_0^2 \int_0^1 y^2 \delta dy dx
$$

= $\frac{2\delta}{3}$

$$
I_y = \int_0^2 \int_0^1 x^2 \delta dy dx
$$

= $\frac{8\delta}{3}$.

2. Find the centre of mass of the thin triangular plate of density $\delta = \delta(x, y) = x + 2y + 1$ bounded by $x = 0, y = 0$ and $x + y = 1$.

Solution.

$$
M = \int_0^1 \int_0^{1-x} (x + 2y + 1) dy dx
$$

=
$$
\int_0^1 [(1-x)(x + 1) + (1 - x)^2] dx
$$

= 1

$$
M_x = \int_0^1 \int_0^{1-x} x(x+2y+1) dy dx
$$

=
$$
\int_0^1 [(1-x)x(x+1) + x(1-x)^2] dx
$$

=
$$
\frac{1}{3}
$$

$$
M_y = \int_0^1 \int_0^{1-x} y(x+2y+1) dy dx
$$

=
$$
\int_0^1 \left[\frac{1}{2} (x+1)(1-x)^2 + \frac{2}{3} (1-x)^3 \right] dx
$$

=
$$
\frac{3}{8}
$$

$$
\therefore (\bar{x}, \bar{y}) = \left(\frac{M_x}{M}, \frac{M_y}{M} \right) = \left(\frac{1}{3}, \frac{3}{8} \right).
$$

3. Let S be the solid bounded by $z = y^2, z = 1$ and $x = \pm 1$. Assume S has constant density. Find I_x, I_y, I_z and the centre of mass of S in terms of its mass M. **Solution.** Let V be the volume of S .

$$
V = \int_{-1}^{1} \int_{-1}^{1} \int_{y^2}^{1} dz dy dx
$$

= $2 \int_{-1}^{1} (1 - y^2) dy$
= $\frac{8}{3}$

$$
M_x = \frac{M}{V} \cdot \int_{-1}^1 \int_{-1}^1 \int_{y^2}^1 x dz dy dx
$$

= 0

$$
M_y = \frac{M}{V} \cdot \int_{-1}^{1} \int_{-1}^{1} \int_{y^2}^{1} y dz dy dx
$$

= $\frac{2M}{V} \cdot \int_{-1}^{1} y(1 - y^2) dy$
= 0

$$
M_z = \frac{M}{V} \cdot \int_{-1}^{1} \int_{-1}^{1} \int_{y^2}^{1} z dz dy dx
$$

= $\frac{2M}{V} \cdot \int_{-1}^{1} \frac{1}{2} (1 - y^4) dy$
= $\frac{8M}{5V}$

Let

$$
X := \int_{-1}^{1} \int_{-1}^{1} \int_{y^2}^{1} x^2 dz dy dx
$$

= $\frac{2}{3} \int_{-1}^{1} (1 - y^2) dy$
= $\frac{8}{9}$

$$
Y := \int_{-1}^{1} \int_{-1}^{1} \int_{y^2}^{1} y^2 dz dy dx
$$

= $2 \int_{-1}^{1} y^2 (1 - y^2) dy$
= $\frac{8}{15}$

$$
Z := \int_{-1}^{1} \int_{-1}^{1} \int_{y^2}^{1} z^2 dz dy dx
$$

= $\frac{2}{3} \int_{-1}^{1} (1 - y^6) dy$
= $\frac{8}{7}$

Then

$$
(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_x}{M}, \frac{M_y}{M}, \frac{M_z}{M}\right) = \left(0, 0, \frac{\frac{8}{5}}{\frac{8}{3}}\right) = \left(0, 0, \frac{3}{5}\right),
$$

and

$$
I_x = (Y + Z)\frac{M}{V} = \left(\frac{8}{15} + \frac{8}{7}\right)\frac{3M}{8} = \frac{22}{35}M
$$

\n
$$
I_y = (X + Z)\frac{M}{V} = \left(\frac{8}{9} + \frac{8}{7}\right)\frac{3M}{8} = \frac{16}{21}M
$$

\n
$$
I_z = (X + Y)\frac{M}{V} = \left(\frac{8}{9} + \frac{8}{15}\right)\frac{3M}{8} = \frac{8}{15}M.
$$

4. (a) Consider the transformation

$$
\begin{cases}\n u = x + y \\
 v = x + 3y\n\end{cases}
$$

.

Express x, y in terms of u, v, and compute $\frac{\partial(x,y)}{\partial(x,y)}$ $\partial(u,v)$.

(b) Compute $\int \int (x^2 + 4xy + 3y^2) dy dx$ where R is the region in the first quadrant R bounded by the lines $y = 1 - x$, $y = 2 - x$, $y = -\frac{1}{3}$ $\frac{1}{3}x$ and $y = -\frac{1}{3}$ $\frac{1}{3}x + 1.$

Solution.

(a) By linear algebra,

$$
\begin{cases}\nx = \frac{3}{2}u - \frac{1}{2}v \\
y = -\frac{1}{2}u + \frac{1}{2}v \\
\frac{\partial(x,y)}{\partial(u,v)} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.\n\end{cases}
$$
\nsince that $x^2 + 4xy + 2x^2 - (x + y)(x + 2y) = xy$, and

(b) Notice that $x^2 + 4xy + 3y^2 = (x + y)(x + 3y) = uv$, and

$$
y = 1 - x \iff u = 1
$$

\n
$$
y = -\frac{1}{3}x \iff v = 0
$$

\n
$$
y = 2 - x \iff u = 2
$$

\n
$$
y = -\frac{1}{3}x + 1 \iff v = 3
$$

\n
$$
y = 0 \iff -\frac{1}{2}u + \frac{1}{2}v = 0 \iff v = u.
$$

It follows that via the transformation described in (a), R is transformed into a right-angled trapezium bounded by $u = 1, u = 2, v = u$ and $v = 3$. See the figure below. Hence the integral $=$ \int_0^2 1 \int_0^3 u uv $\Big\}$ $\Big\}$ $\Big\}$ \vert $\partial(x,y)$ $\partial(u,v)$ $\Big\}$ $\bigg\}$ $\bigg\}$ \vert $dvdu =$ 1 2 \int_0^2 1 \int_0^3 u $uvdvdu =$ 39 16 .

Remark. The line $y = -\frac{1}{3}$ $\frac{1}{3}x$ is redundant for the region R, i.e. it does not contribute to its boundary.